logotipo os fantasticos numeros primos
capa dos livros: os fantásticos números primos, sequências numéricas mágicas, estudos de sequências númericas, o triângulo retângulo
Página de estudos de matemática e sequências numéricas

Obtendo números quadrados perfeitos - 118

Quadrado perfeito é um número inteiro positivo que pode ser expresso como um quadrado de outro número inteiro positivo.

Todo número natural é a raiz de um quadrado perfeito, mas nem todo número natural é um número quadrado perfeito, não há quadrados perfeitos terminados em 2, 3, 7 ou 8.

Podem-se obter um número quadrado perfeito por meio das seguintes formas:

Multiplicando um número por ele mesmo

1 x 1 = 1

2 x 2 = 4

3 x 3 = 9

4 x 4 = 16

5 x 5 = 25

6 x 6 = 36

7 x 7 = 49

8 x 8 = 64

9 x 9 = 81

10 x 10 = 100

e assim sucessivamente...

Números quadrados perfeitos tem as seguintes terminações: 0, 1, 4, 5, 6, ou 9.

Não há números quadrados perfeitos terminados em 2, 3, 7 ou 8.

Elevando-se um número ao expoente 2 (ao quadrado)

1² = 1

2² = 4

3² = 9

4² = 16

5² = 25

6² = 36

7² = 49

8² = 64

9² = 81

10² =100

e assim sucessivamente...

Soma de números ímpares consecutivos

Números ímpares são números que quando divididos por 2, deixam resto 1.

1

1 + 3 = 4

1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16

1 + 3 + 5 + 7 + 9 = 25

1 + 3 + 5 + 7 + 9 + 11 = 36

1 + 3 + 5 + 7 + 9 + 11 + 13 = 49

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 = 64

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 = 81

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 = 100

e assim sucessivamente...

Soma de 2 números triangulares consecutivos

Números triangulares, também chamados de figurados, são números que podem ser formados por meio de pontos representando figuras geométricas como triângulos, quadrados, pentágonos, etc.

1 + 3 = 4

3 + 6 = 9

6 + 10 = 16

10 + 15 = 25

15 + 21 = 36

e assim sucessivamente...

Quadrado da Soma - Produtos notáveis

Exemplo 1)

15² = 225

Por meio deste algorítmo da multiplicação, obtemos o produto de 15 por 15.

    1 5
    1 5
x    
    7 5
  1 5  
 
  2 2 5

Por meio do produto notável: o quadrado da soma, efetuando a seguinte expressão onde separamos em classes: unidades, dezenas, centenas, etc.. o número que se queira saber o seu quadrado.

exemplo 2)

15² = (10+5)²

= 10² + 2 x 10 x 5 + 5²

= 100 + 100 + 25

= 225

O quadrado do primeiro termo, mais duas vezes o primeiro termo pelo segundo, mais o quadrado do segundo termo.

Exemplo 3)

34² = 1156

Por meio deste algorítmo da multiplicação, obtemos o produto de 34 por 34.

3 4
    3 4
       
x
1 3 6
1 0 2
       
1 1 5 6

Por meio do produto notável quadrado da soma, efetuando a seguinte expressão onde decompomos em classes: unidades, dezenas, centenas, etc.. o número que se queira saber o seu quadrado.

34² = (30+4)²

= 30² + 2 x 30 x 4 + 4²

= 900 + 240 + 16

= 1156

O quadrado do primeiro termo, mais duas vezes o primeiro termo pelo segundo, mais o quadrado do segundo termo.

Quadrado da diferenças - Produtos notáveis

Exemplo 1)

15² = 225

Por meio deste algorítmo da multiplicação, obtemos o produto de 15 por 15.

    1 5
    1 5
x    
    7 5
  1 5  
 
  2 2 5

Por meio do produto notável quadrado da diferença, efetuando a seguinte expressão onde separamos em classes: unidades, dezenas, centenas, etc., o número que se queira saber o seu quadrado, neste exemplo escolhemos um número terminado em 0 depois de 15 e a diferença entre 15 e o número terminado em 0.

15² = (20-5)²

= 20² - 2 x 20 x 5 + 5²

= 400 - 200 + 25

= 200 + 25

= 225

O quadrado do primeiro termo, menos duas vezes o primeiro termo pelo segundo, mais o quadrado do segundo termo.

Exemplo 2)

34² = 1156

Por meio deste algorítmo da multiplicação, obtemos o produto de 34 por 34.

3 4
3 4
x
1 3 6
1 0 2
1 1 5 6

Por meio do produto notável quadrado da diferença, efetuando a seguinte expressão onde separamos em classes: unidades, dezenas, centenas, etc., o número que se queira saber o seu quadrado, neste exemplo escolhemos um número terminado em 0 depois de 34 e a diferença entre 34 e o número terminado em 0.

34² = (40-6)²

= 40² - 2 x 40 x 6 + 4²

= 1600 - 480 + 36

= 1120 + 36

= 1156

O quadrado do primeiro termo, menos duas vezes o primeiro termo pelo segundo, mais o quadrado do segundo termo.

Outros métodos de obterem números quadrados perfeitos estão no livro digital OS FANTÁSTICOS NÚMEROS PRIMOS, onde há um estudo inédito de sequências númericas embutidas na Tabuada de Pitágoras.

Autor: Ricardo Silva - maio/2016

Fontes Bibliográficas:

SILVA, Ricardo José da. Descobrindo Números Primos a partir de Números Compostos. São Paulo, edição digital, 2019

SILVA, Ricardo José da. Estudos de Sequências Numéricas. São Paulo, edição digital, 2013

SILVA, Ricardo José da. Manual do Quadrado Mágico Triplo. São Paulo, edição digital, 2019

SILVA, Ricardo José da. Os Fantásticos Números Primos. São Paulo, edição digital, 2012

SILVA, Ricardo José da. Quadrados Mágicos e Sequências Numéricas. São Paulo, edição digital, 2018

SILVA, Ricardo José da. Sequência Numéricas Mágicas. São Paulo, edição digital, 2013

SILVA, Ricardo José da. Ternos Pitagóricos e Sequências Numéricas. São Paulo, edição digital, 2017

SILVA, Ricardo José da. O Triângulo Retângulo e as novas fórmulas de cálculos dos seus lados. São Paulo, edição digital, 2014

Matérias relacionadas:

011-estudos-001-diferenca-numeros-quadrados-perfeitos-parte-1
011-estudos-002-soma-numeros-impares-consecutivos
011-estudos-004-soma-numeros-triangulares
Livro digital (e-book)
Os Fantásticos Números Primos
livro os fantasticos números primos

Mais informações, acesse:

SEÇÃO LIVROS

Senhores Professores de Matemática,

Profissionais de Exatas e

Entusiastas Matemáticos

RECEBAM GRATUITAMENTE
O E-BOOK
TRIÂNGULO RETÂNGULO:

 

livro Triângulo Retângulo

FAÇA A SUA SOLICITAÇÃO

AGORA MESMO ATRAVÉS

DO E-MAIL:

contato@osfantasticos numerosprimos.com.br


Prezado visitante, o conteúdo deste site está protegido por direitos autorais.

O uso acadêmico e escolar está liberado, desde que informando ao autor o local ou o meio em que será utilizado e divulgado, através do e-mail: contato

O uso comercial é proibido.

curta  fantasticos numeros primos no facebook
anúncio dominó tri-minox anúncio dominó quadriminox
fapage dos fantasticos numeros primos
Canal youtube dos fantasticos numeros primos