logotipo os fantasticos numeros primos
capa dos livros: os fantásticos números primos, sequências numéricas mágicas, estudos de sequências númericas, o triângulo retângulo
Página de estudos de matemática e sequências numéricas

Métodos para se Reconhecer Números Quadrados Perfeitos - 482

Número Natural multiplicado por ele mesmo têm como resultado um número quadrado perfeito.

Todo número quadrado perfeito termina em: 1, 4, 5, 6, 9, ou 0, mas nem todo número natural que termina em: 1, 4, 5, 6, 9, ou 0 é um número quadrado perfeito.

Não há números quadrados perfeitos que terminem em 2, 3, 7 ou 8.

O presente estudo demonstra novos métodos para se reconhecer se determinado número é ou não um número quadrado perfeito, muito antes de se saber primeiro a sua raiz quadrada.

Métodos para se Reconhecer Números Quadrados Perfeitos

Números quadrados perfeitos

Podemos gerar número quadrado perfeito, por meio:

a) do produto de um número por ele mesmo;

1 x 1 = 1

2 x 2 = 4

3 x 3 = 9

b) de potênciação;

1² = 1

2² = 4

3² = 9

como também, por diversos outros métodos publicados aqui no WebSite Os Fantásticos Números Primos.

Para mais informações, veja abaixo, matérias relacionadas!

Método 1 - Reconhecer número quadrado perfeito ímpar

Subtraindo-se 1 unidade de um número ímpar igual ou maior que 9 terminado em 1, 5 ou 9 e cuja diferença também seja um número divisível por 4 e por 8, então, esse número ímpar é um número quadrado perfeito.

A diferença dividida por 4 tem como quociente um número retangular.

A diferença dividida por 8 tem como quociente um número triangular.

Exemplos:

 

a) número quadrado perfeito 9;

9 - 1 = 8

8 : 4 = 2 (número retangular)

8 : 8 = 1 (número triangular)

Interessante observar que o número retangular 2 é o dobro do triangular 1.

 

b) número quadrado perfeito 25;

25 - 1 = 24

24 : 4 = 6 (número retangular)

24 : 8 = 3 (número triangular)

Interessante observar que o número retangular 6 é o dobro do triangular 3.

 

c) número quadrado perfeito 49;

49 - 1 = 48

48 : 4 = 12 (número retangular)

48 : 8 = 6 (número triangular)

Interessante observar que o número retangular 12 é o dobro do triangular 6.

 

d) número quadrado perfeito 81;

81 - 1 = 80

80 : 4 = 20 (número retangular)

80 : 8 = 10 (número triangular)

Interessante observar que o número retangular 20 é o dobro do triangular 10.

 

e) número quadrado perfeito 121;

121 - 1 = 120

120 : 4 = 30 (número retangular)

120 : 8 = 15 (número triangular)

Interessante observar que o número retangular 30 é o dobro do triangular 15.

Números Quadrados perfeitos ímpares e divisões por 4 e 8

Efetuando-se divisões de um número quadrado perfeito ímpar igual ou maior que 9 por 4 e 8, os quocientes são números decimais exatos, e suas partes inteiras correspondem aos próprios números retângulares e triângulares.

Interessante observar que na divisão por 4, nos números decimais após a vígula é sempre 25 e na divisão por 8, após a vígula é sempre 125.

Números Quadrados Perfeitos ìmpares
e
divisões por 4 e 8
       
raiz quadrado divisão divisão
4 8
       
1 1 0,25 0,125
3 9 2,25 1,125
5 25 6,25 3,125
7 49 12,25 6,125
9 81 20,25 10,125
11 121 30,25 15,125
13 169 42,25 21,125
15 225 56,25 28,125
17 289 72,25 36,125
19 361 90,25 45,125
21 441 110,25 55,125
23 529 132,25 66,125
25 625 156,25 78,125
27 729 182,25 91,125
29 841 210,25 105,125
31 961 240,25 120,125
33 1089 272,25 136,125
35 1225 306,25 153,125
37 1369 342,25 171,125
39 1521 380,25 190,125
       
www.osfantasticosnumerosprimos.com.br

Exemplo 1) Quadrado 9 dividido por 4 e 8

raiz quadrado divisão divisão
4 8
       
3 9 2,25 1,125

A parte inteira (2) do número decimal 2,25 é um número retangular.

A parte inteira (1) do número decimal 1,125 é um número triangular.

Exemplo 2) Quadrado 25 dividido por 4 e 8

raiz quadrado divisão divisão
4 8
       
5 25 6,25 3,125

A parte inteira (6) do número decimal 6,25 é um número retangular.

A parte inteira (3) do número decimal 3,125 é um número triangular.

Para mais informações, veja abaixo, Matérias Relacionadas !

Método 2 - Reconhecer número quadrado perfeito par

Número par cuja soma dos algarismos seja um número divisível por 3 e por 9 e também se esse número par for divisível por 4, então, é um número quadrado perfeito.

Exemplos:

a) número quadrado perfeito 36;

soma dos algarismos: 3 + 6 = 9

36 : 3 = 12

36 : 9 = 4 (número quadrado)

 

36 também é divisível por 4

36 : 4 = 9 (número quadrado)

 

√36 = 6

 

b) número quadrado perfeito 144;

soma dos algarismos: 1 + 4 + 4 = 9

144 : 3 = 48

144 : 9 = 16 (número quadrado)

 

144 também é divisível por 4

144 : 4 = 36 (número quadrado)

 

√144 = 12

 

c) número quadrado perfeito 324

soma dos algarismos: 3 + 2 + 4 = 9

324 : 3 = 108

324 : 9 = 36 (número quadrado)

 

324 também é divisível por 4

324 : 4 = 81 (número quadrado)

 

√324 = 18

 

d) número quadrado perfeito 576

soma dos algarismos: 5 + 7 + 6 = 18

576 : 3 = 192

576 : 9 = 64 (número quadrado)

 

576 também é divisível por 4

576 : 4 = 144 (número quadrado)

 

√144 = 12

 

Observação importante: nas divisões por 9 e 4, os quocientes são números quadrados perfeitos.

Interessante observar que as raízes quadradas são múltiplos de 6 e formam uma progressão aritmética (P.A):

√36 = 6

√144 = 12

√324 = 18

√576 = 24

√900 = 30

√1296 = 36

Método 3 - Reconhecer número quadrado perfeito par

Números pares cujas somas dos algarismos não são divisíveis por 3 e por 9, mas atende o critério de divisibilidade por 4, são números de 2 tipos e com as seguintes características:

Potências de base 2

Potências de base 2 são números divisíveis por 2.

Potências de base 2 são números divisíveis por 4 a partir da potência 4.

1 unidade subtraída de uma potência de base 2 têm como resultado número quase potência de base 2, ou também, números denominados de Números de Mesenne.

Na prática os números quase potências de base 2 são as somas dos divisores próprios de uma potência de base 2.

Para mais informações, veja abaixo, matérias relacionadas!

Exemplos:

a) 2 - 1 = 1

b) 4 - 1 = 3

c) 8 - 1 = 7

1, 3, 7, 15, 31, 63, 127, 255,... são números quase potências de base 2 / Números de Mersenne / somas de divisores próprios de potências de base 2.

1, 3, 7, 15, 31, 63, 127, 255,... são números de 1 unidade menor de uma potência de base 2.

Números quadrados (que não são potências de base 2)

Exemplos:

a) número quadrado perfeito 196

a soma dos algarismos: 1 + 9 + 6 = 16, não é divisível por 3 e nem por 9, mas 196 é divisível por 4.

196 : 4 = 49

Interessante observar que:

7 x 7 = 49 (quadrado perfeito)

7 é primo.

14 x 14 = 196 (quadrado perfeito)

 

b) número quadrado perfeito 484

a soma dos algarismos: 4 + 8 + 4 = 16, não é divisível por 3 e nem por 9, mas 484 é divisível por 4.

484 : 4 = 121

Interessante observar que:

11 x 11 = 121 (quadrado perfeito)

11 é primo.

22 x 22 = 484 (quadrado perfeito)

 

c) número quadrado perfeito 676

a soma dos algarismos: 6 + 7 + 6 = 19, não é divisível por 3 e nem por 9, mas 676 é divisível por 4.

676 : 4 = 169

Interessante observar que:

13 x 13 = 169 (quadrado perfeito)

13 é primo.

26 x 26 = 676 (quadrado perfeito)

 

d) número quadrado perfeito 784

a soma dos algarismos: 7 + 8 + 4 = 19, não é divisível por 3 e nem por 9, mas 784 é divisível por 4.

784 : 4 = 196

Interessante observar que:

14 x 14 = 196 (quadrado perfeito)

28 x 28 = 676 (quadrado perfeito)

 

e) número quadrado perfeito 1156

a soma dos algarismos: 1 + 1 + 5 + 6 = 13, não é divisível por 3 e nem por 9, mas 1156 é divisível por 4.

1156 : 4 = 289

Interessante observar que:

17 x 17 = 289 (quadrado perfeito)

17 é primo.

34 x 34 = 1156 (quadrado perfeito)

 

f) número quadrado perfeito 1444

a soma dos algarismos: 1 + 4 + 4 + 4 = 13, não é divisível por 3 e nem por 9, mas 1444 é divisível por 4.

1444 : 4 = 361

Interessante observar que:

19 x 19 = 361 (quadrado perfeito)

19 é primo.

38 x 38 = 1444 (quadrado perfeito)

 

Conclusão:

Querendo-se saber se determinado número é ou não um número quadrado perfeito, pelos exemplos demonstrados, não há a necessidade de se utilizar o algoritmo Decomposição em Fatores Primos ou quaisquer outros.

Querendo-se saber a raiz quadrada de determinado número, há sim, a necessidade de se utilizar algoritmos específicos para esse fim.

Os métodos aqui apresentados para se reconhecer números quadrados perfeitos, apresentam etapas que auxiliam no raciocínio lógico e matemático, bem como, ajudam a entender diversos outros conceitos matemáticos como também a conhecer relações entre sequências numéricas famosas.

 

Autor: Ricardo Silva - dezembro/2023

Fontes Bibliográficas:

SILVA, Ricardo José da. Descobrindo Números Primos a partir de Números Compostos. São Paulo, edição digital, 2019

SILVA, Ricardo José da. Escada de Theon e Sequências Numéricas. São Paulo, edição digital, 2023

SILVA, Ricardo José da. Estudos de Sequências Numéricas. São Paulo, edição digital, 2013

SILVA, Ricardo José da. Manual do Quadrado Mágico Triplo. São Paulo, edição digital, 2019

SILVA, Ricardo José da. Os Fantásticos Números Primos. São Paulo, edição digital, 2012

SILVA, Ricardo José da. Números Perfeitos e Sequências Numéricas. São Paulo, edição digital, 2020

SILVA, Ricardo José da. Números Primos e o Método Número Atraentes. São Paulo, edição digital, 2022

SILVA, Ricardo José da. Progressões Aritméticas e Geométricas - novas fórmulas de somas de PAs e PGs. São Paulo, edição digital, 2021

SILVA, Ricardo José da. Quadrados Mágicos e Sequências Numéricas. São Paulo, edição digital, 2018

SILVA, Ricardo José da. Números Triangulares e Sequências Numéricas. São Paulo, edição digital, 2013

SILVA, Ricardo José da. Ternos Pitagóricos e Sequências Numéricas. São Paulo, edição digital, 2017

SILVA, Ricardo José da. O Triângulo Retângulo - novas fórmulas algébricas e aritméticas de cálculos. São Paulo, edição digital, 2014

Matérias relacionadas:

011-estudos-010-numeros-quadrados-terminacoes
011-estudos-081-quadrados-perfeitos-multiplos-de-quatro
011-estudos-280-numeros-triangulares-numero-4
011-estudos-306-potencias-base-2-soma-progressoes-geometricas
011-estudos-484-um-numero-seu-dobro-seu-quadrado-e-o-numero-quatro
011-estudos-494-potencias-base-2-e-numeros-quadrados-perfeitos
011-estudos-495-potencias-base-2-e-numeros-quadrados-perfeitos-quadruplos
Livro digital (e-book)
Escada de Theon
e Sequências Numéricas
Escada de Theon e Sequências Numéricas

Mais informações, acesse:

SEÇÃO LIVROS

Livro digital (e-book)
Números Primos e o
Método Números Atraentes
livro Números Primos e o Método Números Atraentes

Mais informações, acesse:

SEÇÃO LIVROS

Livro digital (e-book)
Progressões Aritméticas e Geométricas
livro digital Progressões Aritméticas e Geometricas

Mais informações, acesse:

SEÇÃO LIVROS

Livro Digital (e-book)
Tabuada de Pythagoras
e Sequências Numéricas
livro digital Tabuada de Pythagoras e sequências numéricas

Mais informações, acesse:

SEÇÃO LIVROS

Livro Digital (e-book)
Estudos de Sequências Numéricas
livro estudos de sequências numéricas

Mais informações, acesse:

SEÇÃO LIVROS

Livro Digital (e-book)
Os Fantásticos Números Primos
livro os fantasticos números primos

Mais informações, acesse:

SEÇÃO LIVROS

Livro Digital (e-book)
Ternos Pitagóricos e Sequências Numéricas
livro Ternos Pitagóricos e Sequências Numéricas

Mais informações, acesse:

SEÇÃO LIVROS

Senhores Professores de Matemática,

Profissionais de Exatas e

Entusiastas Matemáticos

Recebam GRATUITAMENTE
o E-book
Triângulo Retângulo

 

livro Triângulo Retângulo

FAÇA A SUA SOLICITAÇÃO

AGORA MESMO ATRAVÉS

DO E-MAIL:

contato@osfantasticos numerosprimos.com.br

Livro Digital (e-book) Descobrindo Números Primos a partir de Números Compostos
livro descobrindo numeros primos a partir numeros compostos

Mais informações, acesse:

SEÇÃO LIVROS

Livro Digital (E-book) Quadrados Mágicos e Sequências Numéricas
livro quadrados mágicos e sequências numéricas

Mais informações, acesse:

SEÇÃO LIVROS

Livro digital (e-book)
Números Triangulares e Sequências Numéricas
livro triangulares e sequências numéricas mágicas

Mais informações, acesse:

SEÇÃO LIVROS

Manual digital (E-book) Quadrado Mágico Triplo
livro quadrado mágico triplo
DOWNLOAD GRATUITO

Mais informações, acesse:

SEÇÃO LIVROS

Livro digital (e-book)
Números Perfeitos e Sequências Numéricas
livro Números Perfeitos e Sequências Numéricas

Mais informações, acesse:

SEÇÃO LIVROS

Manual Digital (E-book) Multiplicação através da soma de múltiplos
livro multiplicação através da soma de múltiplos
DOWNLOAD GRATUITO

Mais informações, acesse:

SEÇÃO LIVROS


Prezado visitante, o conteúdo do

WebSite Os Fantásticos Números Primos

está protegido por direitos autorais.

O uso acadêmico e escolar está liberado,

desde que informando ao autor o local e

o meio em que será utilizado e divulgado,

através do e-mail:

contato@osfantasticosnumerosprimos.com.br

O uso comercial é proibido.

curta  fantasticos numeros primos no facebook
anúncio dominó tri-minox anúncio dominó quadriminox
logotipo Ric Desing

Assessoria Gráfica e de Comunicação para
Escritores Independentes
que desejam lançar obras literárias,
técnicas ou artísticas.


Projeto Gráfico, Diagramação
e Editoração Eletrônica de livros (e-books).


Desenvolvimento de WebSite.


Contato

ric@osfantasticosnumerosprimos.com.br

fapage dos fantasticos numeros primos
Canal youtube dos fantasticos numeros primos