logotipo os fantasticos numeros primos
capa dos livros: os fantásticos números primos, sequências numéricas mágicas, estudos de sequências númericas, o triângulo retângulo
Página Textos

Triângulos Pitagóricos inscritos numa semicircunferência - 017

Tales de Mileto, (c.624 — 546 a.C.) foi um filósofo, matemático, engenheiro, astrônomo da Grécia Antiga, considerado, por alguns, o primeiro filósofo ocidental. De ascendência fenícia, nasceu em Mileto, antiga colônia grega, na Ásia Menor, atual Turquia.

Tales é apontado como um dos sete sábios da Grécia Antiga.

Entre seus feitos, na área de geometria, estão:

a) Teorema de Tales (intersecção) - um feixe de retas paralelas que é intersectado por duas retas transversais formam segmentos proporcionais;

b) Teorema do círculo - todo triângulo inscrito numa semicircunfência é um triângulo retângulo;

c) determinou através de cálculos de segmentos proporcionais a altura de uma pirâmide por meio de sua sombra e a altura e sombra de uma estaca.

Triângulo retângulo aleatório

Com lápis, caneta ou outro instrumento que se possa riscar sobre determinado suporte como papel, madeira, etc., pode-se desenhar triângulos retângulos aleatórios, isto é, com quaisquer tamanhos e ângulos.

Mas não se pode afirmar que os triângulos desenhados são TRIÂNGULOS RETÂNGULOS DE 30, 60 E 90 GRAUS OU TRIÂNGULOS RETÂNGULOS PITAGÓRICOS.

Para poder afirmar que possuem determinados ângulos e medidas são necessários utilizar um TRANSFERIDOR e RÉGUA.

Triângulo retângulo aleatório

Triângulo Pitagórico em papel quadriculado

Sobre papel quadriculado, pode-se desenhar Triângulos Pitagóricos de quaisquer comprimentos à mão-livre, pois os lados de um triângulo retângulo pitagórico são formados por ternos pitagóricos, isto é, conjunto de 3 número inteiros que satisfazem ao Teorema de Pitágoras.

Triângulo pitagórico em papel quadriculado

Triângulo retângulo de 30-60-90 graus em papel quadriculado

Sobre papel quadriculado, pode-se tentar desenhar triângulos retângulos de 30-60-90 graus aproximados, à mão-livre.

Triângulo retângulo de 30-60-90 graus possuem 2 lados cujas medidas são números inteiros e um lado com medida de número irracional, isto é, número decimal, não periódico e infinito.

Triângulo retângulo de 30-60-90 graus em papel quadriculado

Triângulo retângulo a partir de 2 números aleatórios

Triângulos retângulos também podem ser construídos escolhendo-se 2 números aleatóriamente, confome exemplo a seguir com uma reta numerada ou papel quadriculado:

Exemplo A)

a) Números escolhidos 2 e 3;

b) soma-se os dois números

2 + 3 = 5;

c) faz-se uma reta numerada de 5 unidades;

d) marca-se o ponto 2 na reta numerada;

e) multiplica o 2 por 3;

2 x 3 = 6

f) extrai-se a raiz quadrada de 6;

√6= 2,449...

g) a partir do ponto 2, traça-se uma perpendicular de medida 2,44;

h) una com seguimentos de reta a extremidade da reta numerada ao extremo da perpendicular, formando a figura de um triângulo retãngulo;

i) determina-se a média aritmética de 2 e 3;

2 + 3 / 2 = 2,5

j) na reta numerada de 5 unidades, marque o ponto médio de 2,5 unidade;

k) com a ponta seca do compasso no ponto médio e abertura até a extremidade da reta numerada faça uma circunferência.

l) a circunferência intersecta os ângulos do triângulo retângulo.

Deixo os exemplos B e C a você estimado visitante, para treinar!

Triângulo retângulo a partir de 2 números aleatórios

Triângulo equilátero inscrito numa circunferência

Pode-se desenhar um triângulo inscrito numa circunferência, utilizando régua não graduada e compasso da seguinte forma:

a) traça-se duas retas perpendiculares;

b) com abertura qualquer do compasso, ponta seca no cruzamento da retas, desenha-se uma circunferência;

c) com mesma abertura do compasso, na intersecção da reta vertical com a circunferência, na parte inferior, coloca-se a ponta seca e traça-se um arco;

d) estes procedimentos, faz com que se determinem 3 divisões de 120 graus na circunferência;

e) unindo-se os pontos das três divisôes com seguimentos de retas, constrói-se um triângulo equilátero.

Traçando-se um segmeno perpendicular da base ao vértice superior, obtem-se dois triângulo retângulos de 30, 60 e 90 graus.

triângulo equilátero inscrito numa circunferência

Triângulo retângulo inscrito numa circunferência

Com a mesma base e etapas de construção da (fig. 05-17-01) pode-se desenhar um triângulo retângulo de 30, 60 e 90 graus cuja hipotenusa tem a mesma medida do diâmetro da circunferência.

triângulo retângulo inscrito numa circunferência

Triângulos equiláteros e retângulos inscritos na Vesica Piscis

Vesica Piscis é uma construção geométrica com duas circunferências de tal modo que o centro de uma está na cincunferência da outra.

A Vesica Piscis é uma base de construção com a qual se poder desenhar figuras geométrias diversas, por meio dela, é possível construirem polígonos sequênciais de lados de mesma medida, utilizando somente compasso e régua não graduada.

No exemplo a seguir, apresenta detalhes de constuções de triângulos equiláteros e triângulos retângulos proporcionais.

triângulos equiláteros e retângulos inscritos na Vesica Piscis

Triângulo retângulo de 30, 60 e 90 graus inscrito numa semicircunferência

O triângulo retângulo de 30, 60 e 90 graus quando inscrito numa semicircunferência se encaixa perfeitamente na forma da "meia-lua" que é formada pela própria semicircunferência.

O vértice do ângulo de 90 graus e o seguimento da altura relativa à hipotenusa se encontram justamente na intersecção com a semicircunferência.

O seguimento da altura relativa à hipotenusa, parte do ponto médio do raio da semicircunferência até um ponto da própria semicircunferência.

Propriedades estas, que não acontecem com triângulos cujos ângulos diferem de 30 e 60 graus.

Outra característica intrínsica do triângulo retângulo de 30, 60 e 90 graus e que eles são submúltiplos do número 360.

Triângulo retângulo 30, 60 e 90 graus inscritos numa semicircunferência

Triângulo retângulo de 30, 60 e 90 graus e propriedades métricas

O triângulo retângulo de ângulos de 30, 60 e 90 graus, além de suas propriedades métricas, possui também propriedades trigonométricas.

A razão entre a medida do cateto oposto pela hipotenusa é constante, isto é, vale 1/2, denominada de seno de 30 graus.

A medida do cateto oposto é a metade da medida da hipotenusa, ou a medida da hipotenusa é o dobro da medida do cateto oposto.

Triângulo retângulo de 30, 60 e 90 e propriedades métricas

Triângulo retângulo de 30, 60 e 90 graus - relações métricas

Pode-se determinar diversas medidas em relação aos lados quanto as partes do triângulo retângulo de 30.60 e 90 graus.

Lado representação medida quadrado
       
hipotenusa a 10 100
       
cateto maior b 8,7 75,6
       
cateto menor c 5 25
       
projeção do cateto menor n 2,5  
       
projeçãodo cateto maior m 7,5  
       
altura da hipotenusa h 4,3 18,75
       

Teorema de Pitágoras

a 2 = b 2 + c 2

10 2 = 8,7 2 + 5 2

100 = 75 + 25

100 = 100

Para se determinar a medida da projeção do cateto menor sobre a hipotenusa

c 2 / a = n

5 2 / 10 = 2,5

25 / 10 = 2,5

ou

c 2 = a x n

Para se determinar a medida da projeção do cateto maior sobre a hipotenusa

b 2 / a = m

8,7 2 / 10 = 7,5

75,6 / 10 = 7,5

ou

b 2 = a x m

Para se determinar a altura relativa à hipotenusa

h 2 = m x n

h 2 = 2,5 x 7,5

h 2 = 18,75

h = √18,75

h = 4,3

Para se determinar a medida da hipotenusa

a = n + m

10 = 2,5 + 7,5

10 = 10

Triângulo retângulo de 30, 60 e 90 graus - mediatriz e mediana

A partir da mediatriz (ponto médio de um segmento de reta) do raio da semicircunferência, determina-se a altura relativa à hipotenusa, outra propriedade que caracteriza um triângulo retângulo de 30, 60 e 90 graus.

Traçando-se a mediana (segmento de reta do vértice ao ponto médio do diâmetro), determina-se um triângulo equilátero inscrito no triângulo retângulo de 30, 60 e 90 graus.

Triângulo retângulo de 30, 60 e 90 graus - mediana

Triângulo retângulo - resumo de relações métricas

Resumo da relações métricas no triângulo retângulo.

triângulo retângulo - resumo de relações métricas

Ternos Pitagóricos

Por meio das Fórmulas de Euclides pode-se determinar ternos pitagóricos primitivos a partir de dois números primos entre si.

No livro digital Ternos Pitagóricos e Sequências Numéricas discorre sobre outros métodos de se formar ternos pitagóricos, e entre eles, que a partir de qualquer número ímpar maior que 1 pode-se determinar ternos pitagóricos primitivos.

Exemplo)

Terno Pitagórico a partir do número ímpar 3

a) 3 (cateto menor)

b) Quadrado de 3 = 9

c) 9 - 1 = 8

c) 8 : 2 = 4

d) 4 (cateto maior)

e) 4 + 1 = 5

f) 5 (hipotenusa)

Triângulo Pitagórico 3-4-5

Triângulos Pitagóricos são triângulos cujos lados são formados por três números inteiros, denominados de ternos pitagóricos.

Determinados triângulos pitagóricos possuem ângulos agudos de números primos.

O triângulo pitagórico 3-4-5 possui ângulos agudos de 37 e 53 graus e é o único triângulo formado por 3 números consecutivos cuja diferença entre eles é de 1 unidade.

triângulo pitagórico inscrito numa semicircunferência

Triângulo pitagórico com régua graduada e compasso

Na construção do Triângulos Pitagórico 3-4-5 com régua graduada e compasso obteve-se outras relações métricas interessantes.

As relaçôes métricas aqui demonstradas, acredito ser novidades, pois até então, pesquisas realizadas sobre o assunto não apresentaram modelos matemáticos semelhantes.

triângulo retângulo - altura relativa a hipotenusa

Primeira solução - diferença das projeções dos catetos

a) Subtraia o segmento n de m;

3,2 cm - 1,8 cm = 1,4 cm

b) divida 1,4 cm por 2;

1,4 : 2 = 0,7 cm

c) a partir do centro do diâmetro, para à esquerda, marque a diferença de 0,7 cm;

d) constrói-se uma perpendicular (altura relativa à hipotenusa);

e) ligua-se com segmentos da extremidade do diâmetro à intersecção com a semicircunferência a altura relativa à hipotenusa.

Observação importante: esta propriedade também é válida para o triângulo retângulo de 30, 60 e 90 graus.

Segunda solução - diferença dos quadrados dos catetos

a) 16 cm - 9 cm = 7cm

b) divide-se a diferença por 10;

7 cm : 10 = 0,7 cm

c) a partir do centro do diâmetro, para à esquerda, marca-se a diferença de 0,7 cm;

d) constrói-se uma perpendicular (altura relativa à hipotenusa);

e) ligua-se com segmentos da extremidade do diâmetro à intersecção com a semicircunferência a altura relativa à hipotenusa.

Observação importante: esta propriedade também é válida para o triângulo retângulo de 30, 60 e 90 graus.

Terceira solução - soma dos dos catetos

a) soma dos catetos;

3cm + 4 cm = 7cm

b) divide-se a soma por 10;

7 cm : 10 = 0,7 cm

c) a partir do centro do diâmetro, para à esquerda, marca-se a diferença de 0,7 cm;

d) constrói-se uma perpendicular (altura relativa à hipotenusa);

e) ligua-se com segmentos da extremidade do diâmetro à intersecção com a semicircunferência a altura relativa à hipotenusa.

triângulo retângulo pitagórico 3-4-5 - novas relações métricas

Triângulo Pitagórico 5-12-13 inscrito numa semicircunferência

Triângulo retângulo formado pelo terno pitagórico 5-12-13

Triângulo Pitagórico 5-12-13 inscrito numa semicircunferência

Primeira solução - direfença das projeções dos catetos

a) Subtraia o segmento m de n;

11,07 cm - 1,92 cm = 9,15 cm

b) divida 9,15 cm por 2;

9,15 : 2 = 4,57 cm (arredonda-se para 4,6 cm)

c) a partir do centro do diâmetro marque a diferença de 4,6 cm;

d) constrói-se uma perpendicular (altura relativa à hipotenusa);

e) ligua-se com segmentos da extremidade do diâmetro à intersecção com a semicircunferência à altura relativa à hipotenusa.

Observação importante: esta propriedade também é válida para o triângulo retângulo de 30, 60 e 90 graus.

Desafio ao visitante

O Web-Site Os Fantásticos Números Primos lança um desafio a você estimado visitante: de construir um triângulo pitagórico inscrito numa circunferência somente com régua não graduada e compasso semelhante ao triângulo retângulo de 30, 60 e 90 graus para ser publicado na Seção Texto do WebSite.

 

Enviando o seu estudo e modelo matemático da sua solução, para o nosso e:mail:

contato@osfantasticosnumerosprimos.com.br,

você receberá como cortesia:

O livro digital OS FANTÁSTICOS NÚMEROS PRIMOS

 

Veja a matérias:

 

005-texto-017-triangulos-pitagoricos-inscrito-semicircunferencia

 

005-texto-018-triangulo-pitagorico3-4-5-inscrito-semicircunferencia

 

sobre construções de triângulos.

Autor: Ricardo Silva- abril/2020

Fontes Bibliográficas:

Dante, Luiz Roberto . Tudo é Matemática / Luiz Roberto Dante - - 3. ed. - - São Paulo: Àtica, 2009

Lawlor, Robert. A Geometria Sagrada. Versão Brasileira: GVS, 1996

NAKAMURA, Keiji. Conjunto do números irracionais: a trajetória de um conteúdo não incorporado às práticas educacionais. Dissertação de Mestrado. Pontifícia Universidade Católica. São Paulo, 2008

Silva, Felipe Alberto da. A figura da Mandorla e da Vesica Pisces - As possilibilidades de construção - Dissertação de Mestrado. Universidade de Lisboa - Faculdade de Belas Artes, 2013.

SILVA, Ricardo José da. Estudos de Sequências Numéricas. São Paulo, edição digital, 2013

SILVA, Ricardo José da. Os Fantásticos Números Primos. São Paulo, edição digital, 2012

SILVA, Ricardo José da. Quadrados Mágicos e Sequências Numéricas. São Paulo, edição digital, 2018

SILVA, Ricardo José da. Sequência Numéricas Mágicas. São Paulo, edição digital, 2013

SILVA, Ricardo José da. Ternos Pitagóricos e Sequências Numéricas. São Paulo, edição digital, 2017

SILVA, Ricardo José da. O Triângulo Retângulo e as novas fórmulas de cálculos dos seus lados. São Paulo, edição digital, 2014

https://pt.wikipedia.org/wiki/Tales_de_Mileto

https://pt.wikipedia.org/wiki/Teorema_de_Tales_(interse%C3%A7%C3%A3o)

https://pt.wikipedia.org/wiki/Teorema_de_Tales_(c%C3%ADrculo)

Matérias relacionadas:

005-texto-005-triangulo-retangulo-figura-fantastica
005-texto-006-relacoes-metricas-triangulo-retangulo
005-texto-009-vesica-piscis-figuras-geometrica
005-texto-013-teorema-pitagoras-power-point-e-imagens-JPEG
005-texto-018-triangulo-pitagorico3-4-5-inscrito-semicircunferencia
011-estudos-115-quadrados-dinamicos
011-estudos-116-triangulo-inscrito-em-um-quadrados
011-estudos-143-quadrado-inscrito-e-circunscrito-numa-circunferencia
011-estudos-157-raiz-quadrada-aproximada
011-estudos-251-teorema-de-pitagoras
Livro Ternos Pitagóricos e sequências numéricas
livro Ternos Pitagóricos e Sequências Numéricas

Mais informações, acesse:

SEÇÃO LIVROS

LIVROS DIGITAIS (E-books)

Senhores Professores de Matemática, Profissionais de Exatas e Entusiastas Matemáticos se encontram disponíveis para

DOWNLOAD GRATUITO
livro Triângulo Retângulolivro multiplicação através da soma de múltiplos

Mais informações, acesse:

SEÇÃO LIVROS


Prezado visitante, o conteúdo deste site está protegido por direitos autorais.

O uso acadêmico e escolar está liberado, desde que informando ao autor o local ou o meio em que será utilizado e divulgado, através do e-mail: contato

O uso comercial é proibido.

curta  fantasticos numeros primos no facebook
anúncio dominó tri-minox anúncio dominó quadriminox
fapage dos fantasticos numeros primos
Canal youtube dos fantasticos numeros primos